NASA - Science Lecture: Humans Living on Mars
Moderador: Conselho de Moderação
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
Re: NASA - Science Lecture: Humans Living on Mars
What Will Humans Eat on Mars?
Planetary scientist Kevin Cannon talks about the logistics of feeding a population of one million on the Red Planet
By Andrea Michelson
SMITHSONIAN.COM
If you ask Elon Musk, private space travel could be a reality in the next year, and a self-sustaining city on Mars is not far off. In the meantime, planetary scientist Kevin Cannon and his colleagues at the University of Central Florida are less concerned with the Starship that will launch passengers into orbit and more interested in how to feed a potential human settlement on Mars. In their recent paper “Feeding One Million People on Mars,” Cannon and Daniel Britt modeled a path toward self-sufficiency for one million settlers over the course of 100 Earth years—taking into account caloric intake per person, imported food in the early years, and necessary infrastructure, like pressurized food production facilities and underground tunnels for growing plants with LED lighting and sunlight piped in.
Smithsonian magazine spoke to Cannon about their detailed vision.
What inspired you to consider feeding one million people on Mars?
I've been working on a lot of projects related to space resources, so using local materials on the moon or Mars to support exploration and development of space. If you think about the consumables you would need for humans, you're looking at oxygen, water, construction material and food. And what we realized is that the food is one of the most challenging things to produce on the surface of Mars and that it's going to take a lot of processing. In our opinion, people really weren't thinking big enough.
How did you come up with numbers—like number of people and caloric intake—for the study?
The million people, that's kind of an arbitrary figure based on some stuff that Elon Musk has talked about for his aspirational goals, so we just chose that as a baseline. For the specific numbers in the study, we took a lot from data on Earth. For example, we looked at how many calories the average person eats per day and then scaled that based on a person's age and activity level. In this computer model, we actually represent a population of people, so we had a 50/50 mix of males and females and we had an age structure. Of course, children consume a lot less calories than older people. That’s all taken into account in our modeling.
What practical factors did you consider when thinking about food production on Mars?
What turns out to be the real limiting factor is the amount of land that you require. The reason why that's so important on Mars is that when you think about land, you're really talking about building an enclosed structure. You have to pressurize it, you have to heat it and you have to light it to protect against the Martian environment. There's almost no atmosphere. It's very cold. So, land turns out to be the most important driver. The more land you have to use to grow food, then the more construction, the more power, et cetera.
How did you determine which food sources would be well-suited for life on Mars?
We looked at this in a very general way. We thought, okay, let's start from plants, because that's what most people assumed in the past when they thought about what people would be eating on space missions. And let's go a little bit beyond that to some protein sources. So, we looked at what's being done on Earth and we honed in on insect-based foods that turned out to be very efficient for Mars, as well as what's called cellular agriculture. That’s this idea of growing meat from cells in these large bioreactors. It’s something that's actually coming a lot sooner than people think on Earth, and it's very well-adapted for producing food in space.
Humans on Mars will likely live off lab-grown meat, products made with insect protein and vegetables grown in underground tunnels. (Marina Markova)
How does cellular agriculture work?
The way it works is that you take cells from an animal—you can really use any animal, but people are starting with chickens, cows, the familiar things. You extract those cells and then you basically grow them in a nutrient solution. This could be done in a big, stainless steel tank and it almost would look more like brewing beer than a traditional farm. What people are really working on now is to try to get the texture right by building up those cells in some kind of scaffold that gives you the texture of different meats. But the whole point is it's a much more sustainable way of producing animal protein, and it's much more ethical because it doesn't involve raising animals in questionable conditions.
Could you elaborate a bit more on the insect protein?
In North America and in Europe, it's not really part of our culture or diet. But if you look more broadly, I think something like 2 billion people eat insects as part of their diet on a regular basis. It turns out to be a very good source of protein and again, it's much more sustainable. It doesn't require a lot of land or a lot of water compared to factory farming practices. Of course, there is a little bit of a gross factor. But people can, for example, grind up crickets into flour and then put them into cookies or chips or things like that, so you can hide them and get away from just chomping down on whole insects.
What kind of fruits or vegetables would be on the menu?
If you look at what's being done in space right now, the astronauts have a little garden where they're able to grow things like lettuce, tomatoes and peppers. Of course, those foods are valuable for things like vitamins and the psychological benefit of being able to grow your own vegetables. But you're not going to be able to feed a large population on those very low-calorie vegetables, so you're really going to have to look at things like corn, wheat and soy that are dense enough in calories to support a growing population.
What kinds of technologies did you find were best suited for food production on Mars?
One of the important things is that you would want your food production to be as automated as possible because that would free up people's time to do more important things. A lot of companies are working on that on Earth, trying to integrate robots into farming and insect production. I think the other thing that's going to be important is genetic modification, particularly with the plant species, to find ways to improve strains of crops and make them more resilient to grow in a harsh environment on Mars. Right now, the most promising thing would be something like CRISPR, which has kind of taken over the biology world. Already, there's been a few studies that have used CRISPR to rapidly modify the genomes of specific plant species. So, I think that in particular has the most promise for making Mars-specific strains of crops.
What are some other challenges posed by the conditions on Mars?
One thing we looked at was whether it makes sense to grow plants in greenhouses on the surface. Whenever you see an artist sketch of a Mars base, you always see greenhouses everywhere. But what we found is that you really just don't get enough sunlight at the surface of Mars because it's farther away from the sun. Your incident sunlight is basically what you would get in Alaska, and there's a reason why we don't grow corn and wheat in Alaska. They're growing at more southern latitudes. So, it turns out that something like a greenhouse might actually not make sense on Mars. You might be better off growing the plants and producing other foods in tunnels underground, for example.
Where would the water come from?
We have a pretty good handle on where the water is on Mars. It's mostly locked up as ice underground and it's also found in certain minerals. For things like clays and salts, where the water is actually embedded in the mineral structure, you could heat those up and evaporate the water off. Once you extract that water, it's pretty easy to recycle water fairly efficiently. I think on the space station, something like 97 percent of the water is recaptured and reused. It’s obviously an engineering challenge to mine that water in the first place, but then once you have a reservoir built up, you should be able to recycle it fairly efficiently in this closed ecosystem that you construct.
Based on the results of the study, would you advocate for a human settlement on Mars?
Yes, and I think if we look at what particularly SpaceX is doing, they're already building the ships that are going to take cargo and then people to Mars. We’re already kind of set down that path, and the question is going to be: who goes? Is this going to be space agencies? Is it going to be tourists? And how is a settlement or a city going to build up? But I think it is definitely something that's feasible in the near term.
How could this knowledge apply to life on Earth?
It’s almost a coincidence that the constraints that Mars imposes on you—the lack of atmosphere, the cold—force you to produce food in a way that is more sustainable than what we do on Earth. So, moving away from factory farming, moving away from large scale production of dairy and animal protein and thinking about these alternatives, like insects and cellular agriculture, all of those practices are more sustainable than what we're currently doing on Earth. There’s kind of a spin-off, in that developing this stuff for Mars can help us move to a more responsible way of producing food on Earth.
Read more: https://www.smithsonianmag.com/innovati ... oVs5IuL.99
Give the gift of Smithsonian magazine for only $12! http://bit.ly/1cGUiGv
Follow us: @SmithsonianMag on Twitter
Planetary scientist Kevin Cannon talks about the logistics of feeding a population of one million on the Red Planet
By Andrea Michelson
SMITHSONIAN.COM
If you ask Elon Musk, private space travel could be a reality in the next year, and a self-sustaining city on Mars is not far off. In the meantime, planetary scientist Kevin Cannon and his colleagues at the University of Central Florida are less concerned with the Starship that will launch passengers into orbit and more interested in how to feed a potential human settlement on Mars. In their recent paper “Feeding One Million People on Mars,” Cannon and Daniel Britt modeled a path toward self-sufficiency for one million settlers over the course of 100 Earth years—taking into account caloric intake per person, imported food in the early years, and necessary infrastructure, like pressurized food production facilities and underground tunnels for growing plants with LED lighting and sunlight piped in.
Smithsonian magazine spoke to Cannon about their detailed vision.
What inspired you to consider feeding one million people on Mars?
I've been working on a lot of projects related to space resources, so using local materials on the moon or Mars to support exploration and development of space. If you think about the consumables you would need for humans, you're looking at oxygen, water, construction material and food. And what we realized is that the food is one of the most challenging things to produce on the surface of Mars and that it's going to take a lot of processing. In our opinion, people really weren't thinking big enough.
How did you come up with numbers—like number of people and caloric intake—for the study?
The million people, that's kind of an arbitrary figure based on some stuff that Elon Musk has talked about for his aspirational goals, so we just chose that as a baseline. For the specific numbers in the study, we took a lot from data on Earth. For example, we looked at how many calories the average person eats per day and then scaled that based on a person's age and activity level. In this computer model, we actually represent a population of people, so we had a 50/50 mix of males and females and we had an age structure. Of course, children consume a lot less calories than older people. That’s all taken into account in our modeling.
What practical factors did you consider when thinking about food production on Mars?
What turns out to be the real limiting factor is the amount of land that you require. The reason why that's so important on Mars is that when you think about land, you're really talking about building an enclosed structure. You have to pressurize it, you have to heat it and you have to light it to protect against the Martian environment. There's almost no atmosphere. It's very cold. So, land turns out to be the most important driver. The more land you have to use to grow food, then the more construction, the more power, et cetera.
How did you determine which food sources would be well-suited for life on Mars?
We looked at this in a very general way. We thought, okay, let's start from plants, because that's what most people assumed in the past when they thought about what people would be eating on space missions. And let's go a little bit beyond that to some protein sources. So, we looked at what's being done on Earth and we honed in on insect-based foods that turned out to be very efficient for Mars, as well as what's called cellular agriculture. That’s this idea of growing meat from cells in these large bioreactors. It’s something that's actually coming a lot sooner than people think on Earth, and it's very well-adapted for producing food in space.
Humans on Mars will likely live off lab-grown meat, products made with insect protein and vegetables grown in underground tunnels. (Marina Markova)
How does cellular agriculture work?
The way it works is that you take cells from an animal—you can really use any animal, but people are starting with chickens, cows, the familiar things. You extract those cells and then you basically grow them in a nutrient solution. This could be done in a big, stainless steel tank and it almost would look more like brewing beer than a traditional farm. What people are really working on now is to try to get the texture right by building up those cells in some kind of scaffold that gives you the texture of different meats. But the whole point is it's a much more sustainable way of producing animal protein, and it's much more ethical because it doesn't involve raising animals in questionable conditions.
Could you elaborate a bit more on the insect protein?
In North America and in Europe, it's not really part of our culture or diet. But if you look more broadly, I think something like 2 billion people eat insects as part of their diet on a regular basis. It turns out to be a very good source of protein and again, it's much more sustainable. It doesn't require a lot of land or a lot of water compared to factory farming practices. Of course, there is a little bit of a gross factor. But people can, for example, grind up crickets into flour and then put them into cookies or chips or things like that, so you can hide them and get away from just chomping down on whole insects.
What kind of fruits or vegetables would be on the menu?
If you look at what's being done in space right now, the astronauts have a little garden where they're able to grow things like lettuce, tomatoes and peppers. Of course, those foods are valuable for things like vitamins and the psychological benefit of being able to grow your own vegetables. But you're not going to be able to feed a large population on those very low-calorie vegetables, so you're really going to have to look at things like corn, wheat and soy that are dense enough in calories to support a growing population.
What kinds of technologies did you find were best suited for food production on Mars?
One of the important things is that you would want your food production to be as automated as possible because that would free up people's time to do more important things. A lot of companies are working on that on Earth, trying to integrate robots into farming and insect production. I think the other thing that's going to be important is genetic modification, particularly with the plant species, to find ways to improve strains of crops and make them more resilient to grow in a harsh environment on Mars. Right now, the most promising thing would be something like CRISPR, which has kind of taken over the biology world. Already, there's been a few studies that have used CRISPR to rapidly modify the genomes of specific plant species. So, I think that in particular has the most promise for making Mars-specific strains of crops.
What are some other challenges posed by the conditions on Mars?
One thing we looked at was whether it makes sense to grow plants in greenhouses on the surface. Whenever you see an artist sketch of a Mars base, you always see greenhouses everywhere. But what we found is that you really just don't get enough sunlight at the surface of Mars because it's farther away from the sun. Your incident sunlight is basically what you would get in Alaska, and there's a reason why we don't grow corn and wheat in Alaska. They're growing at more southern latitudes. So, it turns out that something like a greenhouse might actually not make sense on Mars. You might be better off growing the plants and producing other foods in tunnels underground, for example.
Where would the water come from?
We have a pretty good handle on where the water is on Mars. It's mostly locked up as ice underground and it's also found in certain minerals. For things like clays and salts, where the water is actually embedded in the mineral structure, you could heat those up and evaporate the water off. Once you extract that water, it's pretty easy to recycle water fairly efficiently. I think on the space station, something like 97 percent of the water is recaptured and reused. It’s obviously an engineering challenge to mine that water in the first place, but then once you have a reservoir built up, you should be able to recycle it fairly efficiently in this closed ecosystem that you construct.
Based on the results of the study, would you advocate for a human settlement on Mars?
Yes, and I think if we look at what particularly SpaceX is doing, they're already building the ships that are going to take cargo and then people to Mars. We’re already kind of set down that path, and the question is going to be: who goes? Is this going to be space agencies? Is it going to be tourists? And how is a settlement or a city going to build up? But I think it is definitely something that's feasible in the near term.
How could this knowledge apply to life on Earth?
It’s almost a coincidence that the constraints that Mars imposes on you—the lack of atmosphere, the cold—force you to produce food in a way that is more sustainable than what we do on Earth. So, moving away from factory farming, moving away from large scale production of dairy and animal protein and thinking about these alternatives, like insects and cellular agriculture, all of those practices are more sustainable than what we're currently doing on Earth. There’s kind of a spin-off, in that developing this stuff for Mars can help us move to a more responsible way of producing food on Earth.
Read more: https://www.smithsonianmag.com/innovati ... oVs5IuL.99
Give the gift of Smithsonian magazine for only $12! http://bit.ly/1cGUiGv
Follow us: @SmithsonianMag on Twitter
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
Re: NASA - Science Lecture: Humans Living on Mars
Antigo cientista da NASA diz que a agência encontrou vida em Marte nos anos 70
Anadolu Agency
Gilbert V. Levin, que liderou uma experiência da NASA em 1976, publicou agora um artigo em que argumenta que os resultados obtidos na altura são prova de que há vida no planeta vermelho
Aexperiência Labeled Release (LR) tinha como objetivo testar o solo de Marte em busca de matéria orgânica e, segundo o principal investigador, os resultados das amostras recolhidas pela sonda Viking foram claros e indicavam a presença de vida.
Num artigo publicado na última quinta-feira da Scientific American, Gilbert V. Levin escreve que, na altura, a equipa obteve um total de quatro resultados positivos para a deteção de respiração microbial no planeta vermelho. "As curvas [de dados] de Marte eram semelhantes às dos testes de solos na Terra. Parecia que tínhamos respondido à derradeira questão", recorda o cientista, que continua a explicar que, no entanto, sem ter sido possível detetar matéria orgânica, "a NASA concluiu que a LR tinha encontrado uma substância que simulava a vida, mas não a vida".
"Inexplicavalmente, mais de 43 anos depois da Viking, nenhuma das sondas subsequentes levou um instrumento para a deteção da vida em Marte para dar seguimento a estes resultados empolgantes", critica Levin.
Na experiência nos anos 70, a Viking colocou nutrientes em amostras de solo marciano. Se houvesse vida, os nutrientes seriam consumidos e haveria vestígios gasosos do funcionamento do metabolismo dos seres vivos, que monitores radioativos seriam capazes de detetar. Para garantir que se tratava mesmo de uma reação biológica, a experiência foi repetida mas depois de "cozinhar" o solo a temperaturas que seriam letais. Se houvesse uma reação metabólica antes mas não depois, isto sugeriria a ação de forças biológicas e foi, segundo o antigo cientista, precisamente o que acconteceu.
Posteriormente, outras experiências não encontraram qualquer material orgânico e a NASA acabou por classificar aqueles primeiros resultados como falsos positivos, atribuíveis a uma reação química desconhecida.
Em 2018, a Curiosity encontrou matéria orgânica e, na semana passada, sedimentos que sugerem a existência, outrora, de lagos salgados na superfície do planeta.
"Que provas há contra a possibilidade da vida em Marte?", escreveu Levin. "O facto espantoso é que não há nenhuma."
http://visao.sapo.pt/actualidade/socied ... -anos-70-1
Anadolu Agency
Gilbert V. Levin, que liderou uma experiência da NASA em 1976, publicou agora um artigo em que argumenta que os resultados obtidos na altura são prova de que há vida no planeta vermelho
Aexperiência Labeled Release (LR) tinha como objetivo testar o solo de Marte em busca de matéria orgânica e, segundo o principal investigador, os resultados das amostras recolhidas pela sonda Viking foram claros e indicavam a presença de vida.
Num artigo publicado na última quinta-feira da Scientific American, Gilbert V. Levin escreve que, na altura, a equipa obteve um total de quatro resultados positivos para a deteção de respiração microbial no planeta vermelho. "As curvas [de dados] de Marte eram semelhantes às dos testes de solos na Terra. Parecia que tínhamos respondido à derradeira questão", recorda o cientista, que continua a explicar que, no entanto, sem ter sido possível detetar matéria orgânica, "a NASA concluiu que a LR tinha encontrado uma substância que simulava a vida, mas não a vida".
"Inexplicavalmente, mais de 43 anos depois da Viking, nenhuma das sondas subsequentes levou um instrumento para a deteção da vida em Marte para dar seguimento a estes resultados empolgantes", critica Levin.
Na experiência nos anos 70, a Viking colocou nutrientes em amostras de solo marciano. Se houvesse vida, os nutrientes seriam consumidos e haveria vestígios gasosos do funcionamento do metabolismo dos seres vivos, que monitores radioativos seriam capazes de detetar. Para garantir que se tratava mesmo de uma reação biológica, a experiência foi repetida mas depois de "cozinhar" o solo a temperaturas que seriam letais. Se houvesse uma reação metabólica antes mas não depois, isto sugeriria a ação de forças biológicas e foi, segundo o antigo cientista, precisamente o que acconteceu.
Posteriormente, outras experiências não encontraram qualquer material orgânico e a NASA acabou por classificar aqueles primeiros resultados como falsos positivos, atribuíveis a uma reação química desconhecida.
Em 2018, a Curiosity encontrou matéria orgânica e, na semana passada, sedimentos que sugerem a existência, outrora, de lagos salgados na superfície do planeta.
"Que provas há contra a possibilidade da vida em Marte?", escreveu Levin. "O facto espantoso é que não há nenhuma."
http://visao.sapo.pt/actualidade/socied ... -anos-70-1
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
- jambockrs
- Sênior
- Mensagens: 2617
- Registrado em: Sex Jun 10, 2005 1:45 am
- Localização: Porto Alegre/RS
- Agradeceu: 427 vezes
- Agradeceram: 180 vezes
Re: NASA - Science Lecture: Humans Living on Mars
Meus prezados
O caminho para Marte: Boeing lidera ataque em missão espacial profunda
A NASA está de olho na exploração de Marte, uma jornada de mais de dois anos que fará história. As crianças de hoje serão os primeiros exploradores do nosso planeta vizinho com a ajuda da Boeing. O desenvolvimento atual da tecnologia avançada de módulos da Boeing tornará possível uma excursão segura para os astronautas em Marte descobrirem que os humanos terrestres ainda não viram. Saiba mais sobre o caminho para Marte em http://www.boeing.com/innovation/
Abstraindo a propaganda, o resto é interessante.
O caminho para Marte: Boeing lidera ataque em missão espacial profunda
A NASA está de olho na exploração de Marte, uma jornada de mais de dois anos que fará história. As crianças de hoje serão os primeiros exploradores do nosso planeta vizinho com a ajuda da Boeing. O desenvolvimento atual da tecnologia avançada de módulos da Boeing tornará possível uma excursão segura para os astronautas em Marte descobrirem que os humanos terrestres ainda não viram. Saiba mais sobre o caminho para Marte em http://www.boeing.com/innovation/
Abstraindo a propaganda, o resto é interessante.
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
Re: NASA - Science Lecture: Humans Living on Mars
Feeding One Million People on Mars
Kevin M. Cannon and Daniel T. Britt
Abstract
Food production on Mars is usually thought of in terms of growing plants to partially support small exploration crews for short- to medium-term stays. Here, we consider the more radical goal of producing enough food on Mars to sustain a permanent settlement of private citizens that increases to 1 million people within 100 Earth years. We modeled a population that grows from immigration as well as naturally. Calorie needs were calculated on a per-person basis, and land use was modeled with a diet that includes staple crops, insect products, and cellular agriculture. Food self-sufficiency can be attained within 100 years with reasonable inputs, but massive amounts of imported food would be needed in the interim. Various strategies can reduce the amount of imported food significantly, balanced against the rate at which pressurized food facilities are constructed. Developing a commercial food industry on Mars will involve high up-front costs, but in situ resource utilization will be able to help close the business case. Future research should focus on methods to produce plant nutrients, insect feed, and cultured cell feedstocks from mostly local resources on Mars. Engineering and architecture efforts should develop automated methods for rapidly building shielded, pressurized volumes to house food production facilities.
https://www.liebertpub.com/doi/10.1089/space.2019.0018
Kevin M. Cannon and Daniel T. Britt
Abstract
Food production on Mars is usually thought of in terms of growing plants to partially support small exploration crews for short- to medium-term stays. Here, we consider the more radical goal of producing enough food on Mars to sustain a permanent settlement of private citizens that increases to 1 million people within 100 Earth years. We modeled a population that grows from immigration as well as naturally. Calorie needs were calculated on a per-person basis, and land use was modeled with a diet that includes staple crops, insect products, and cellular agriculture. Food self-sufficiency can be attained within 100 years with reasonable inputs, but massive amounts of imported food would be needed in the interim. Various strategies can reduce the amount of imported food significantly, balanced against the rate at which pressurized food facilities are constructed. Developing a commercial food industry on Mars will involve high up-front costs, but in situ resource utilization will be able to help close the business case. Future research should focus on methods to produce plant nutrients, insect feed, and cultured cell feedstocks from mostly local resources on Mars. Engineering and architecture efforts should develop automated methods for rapidly building shielded, pressurized volumes to house food production facilities.
https://www.liebertpub.com/doi/10.1089/space.2019.0018
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
Re: NASA - Science Lecture: Humans Living on Mars
Project Mars - A Technical Tale / Wernher Von Braun
O pdf do livro https://www.wlym.com/archive/oakland/do ... roject.pdf
Relacionado https://www.gaia.com/article/wernher-vo ... -elon-musk
O pdf do livro https://www.wlym.com/archive/oakland/do ... roject.pdf
Relacionado https://www.gaia.com/article/wernher-vo ... -elon-musk
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
Re: NASA - Science Lecture: Humans Living on Mars
It seems like everyone has Mars on the mind these days. NASA wants to send humans to the red planet by 2030, and SpaceX wants to get there even sooner, with plans to have people there by 2024.
Mars is a favorite theme in Hollywood, with movies like The Martian and this year’s Life exploring what we might find once we finally reach our celestial neighbor, but most of them aren’t addressing the biggest questions — once we get there, how will we survive long-term?
https://astronomy.com/news/2017/05/could-we-live-on-mars?utm_source=asyfb&utm_medium=social&utm_campaign=asyfb&fbclid=IwAR1I9T6dwZf2GDvApGgMJnq-3PbFaDhJy0sk2l-y4aTKuvh52d3Q7eUVcQM
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
Re: NASA - Science Lecture: Humans Living on Mars
Uma interessante ilustração do conceito de Von Braun de 1969 para uma expedição a Marte utilizando o motor nuclear NERVA então em desenvolvimento.
- cabeça de martelo
- Sênior
- Mensagens: 39540
- Registrado em: Sex Out 21, 2005 10:45 am
- Localização: Portugal
- Agradeceu: 1137 vezes
- Agradeceram: 2858 vezes
Re: NASA - Science Lecture: Humans Living on Mars
Dubai vai construir uma cidade marciana em pleno deserto
O projeto apresentado por uma empresa sediada em Copenhaga e Nova Iorque é uma parte de um ambicioso plano dos Emirados Árabes Unidos em colonizar Marte nos próximos 100 anos.
Dubai está a preparar um projeto de grandes dimensões e bastante arrojado que passa por construir uma cidade marciana.
A ideia nasceu da ambição anunciada, em 2017, pelos Emirados Árabes Unidos em colonizar Marte nos próximos 100 anos. Quem não perdeu tempo foram os arquitetos que, na impossibilidade de irem para o Planeta Vermelho, resolveram recriar a ideia de uma cidade marciana em pleno deserto, nos arredores do Dubai.
O projeto da Mars Science City (Cidade Ciência de Marte) foi projetado para cobrir 176 mil metros quadrados de deserto, o equivalente a mais de 30 campos de futebol, e terá um custo aproximado de 120 milhões de euros (135 milhões de dólares).
Este novo projeto dos Emirados Árabes Unidos contempla a criação do Centro Espacial Mohammed Bin Rashid do Dubai (MBRSC) que visa precisamente desenvolver a tecnologia necessária para colonizar Marte nos próximos 100 anos. E foi nesse sentido que os arquitetos da Bjarke Ingels Group (BIG), empresa sediada em Copenhaga e Nova Iorque, apresentaram uma proposta para projetar no deserto um protótipo de uma cidade que pudesse sustentar a vida em Marte.
Na sua busca para criar um design para tornar o ambiente marciano habitável, os arquitetos tiveram de ter em consideração o facto daquele planeta ter uma atmosfera fina, ou seja há pouca pressão de ar, pelo que os líquidos evaporam-se rapidamente. Além disso, não existe campo magnético e, como consequência, há pouca proteção à radiação solar.
Os desafios de Marte à ciência
Em declarações à CNN, Jonathan Eastwood, diretor do Laboratório Espacial do Imperial College London, que não está ligado ao projeto em curso nos Emirados, considera que a possibilidade de se poder viver em Marte vai muito além dos aspetos técnicos. "O maior desafio não é de engenharia ou científico, mas humano. Ou seja, não é só saber como é possível sobreviver, mas também saber como é possível prosperar", frisou Eastwood.
Independentemente destas questões complicadas de resolver, Jakob Lange, um dos sócios do Bjarke Ingels Group, disse à CNN que a sua equipa de arquitetos planearam superar os desafios colocados em Marte. Assim, para manter uma temperatura confortável e uma pressão de ar habitável, a cidade seria composta por cúpulas pressurizadas, cobertas por uma membrana de polietileno transparente. Cada uma dessas cúpulas receberia oxigénio produzido por uma instalação de eletricidade no gelo subterrâneo.
Nesse sentido, à medida que a população crescesse em Marte, as cúpulas iriam ficar juntas para formar aldeias e até cidades, em forma de anéis. As cidades poderiam ser alimentadas e aquecidas usando energia solar e a atmosfera fina poderia ajudar as cúpulas a manter a temperatura. "Como há muito pouca atmosfera em Marte, a transferência de calor será muito baixa, pelo que o ar dentro das cúpulas não arrefece tão depressa como na Terra", argumentou Lange.
Os edifícios teriam uma sala debaixo do solo marciano, a uma profundidade até seis metros para que as pessoas se pudessem proteger da radiação ou de meteoros perigosos. Nessas salas poder-se-iam, de acordo com este projeto, construir "claraboias que poderiam ter aquários", referiu Lange, lembrando que as janelas de água protegeriam os habitantes da radiação e permitiriam a entrada de luz nessas salas subterrâneas.
"Existe aproximadamente um terço da gravidade, em comparação com a Terra, o que significa em Marte há um conjunto de regras completamente novas que é necessário cumprir ao projetar a arquitetura no espaço", reforçou Lange.
Jonathan Eastwood admite que o design defendido pelos arquitetos contratados pelos Emirados "são parte essencial das infraestruturas essenciais para uma presença a longo prazo de humanos em Marte". "A ideia de proteger gradualmente da radiação é sensata e a ideia das janelas de água é bastante elegante", sublinhou.
https://www.youtube.com/watch?v=cuaQ4UttYY0
https://www.dn.pt/vida-e-futuro/dubai-v ... Kn_HL1uGIg
O projeto apresentado por uma empresa sediada em Copenhaga e Nova Iorque é uma parte de um ambicioso plano dos Emirados Árabes Unidos em colonizar Marte nos próximos 100 anos.
Dubai está a preparar um projeto de grandes dimensões e bastante arrojado que passa por construir uma cidade marciana.
A ideia nasceu da ambição anunciada, em 2017, pelos Emirados Árabes Unidos em colonizar Marte nos próximos 100 anos. Quem não perdeu tempo foram os arquitetos que, na impossibilidade de irem para o Planeta Vermelho, resolveram recriar a ideia de uma cidade marciana em pleno deserto, nos arredores do Dubai.
O projeto da Mars Science City (Cidade Ciência de Marte) foi projetado para cobrir 176 mil metros quadrados de deserto, o equivalente a mais de 30 campos de futebol, e terá um custo aproximado de 120 milhões de euros (135 milhões de dólares).
Este novo projeto dos Emirados Árabes Unidos contempla a criação do Centro Espacial Mohammed Bin Rashid do Dubai (MBRSC) que visa precisamente desenvolver a tecnologia necessária para colonizar Marte nos próximos 100 anos. E foi nesse sentido que os arquitetos da Bjarke Ingels Group (BIG), empresa sediada em Copenhaga e Nova Iorque, apresentaram uma proposta para projetar no deserto um protótipo de uma cidade que pudesse sustentar a vida em Marte.
Na sua busca para criar um design para tornar o ambiente marciano habitável, os arquitetos tiveram de ter em consideração o facto daquele planeta ter uma atmosfera fina, ou seja há pouca pressão de ar, pelo que os líquidos evaporam-se rapidamente. Além disso, não existe campo magnético e, como consequência, há pouca proteção à radiação solar.
Os desafios de Marte à ciência
Em declarações à CNN, Jonathan Eastwood, diretor do Laboratório Espacial do Imperial College London, que não está ligado ao projeto em curso nos Emirados, considera que a possibilidade de se poder viver em Marte vai muito além dos aspetos técnicos. "O maior desafio não é de engenharia ou científico, mas humano. Ou seja, não é só saber como é possível sobreviver, mas também saber como é possível prosperar", frisou Eastwood.
Independentemente destas questões complicadas de resolver, Jakob Lange, um dos sócios do Bjarke Ingels Group, disse à CNN que a sua equipa de arquitetos planearam superar os desafios colocados em Marte. Assim, para manter uma temperatura confortável e uma pressão de ar habitável, a cidade seria composta por cúpulas pressurizadas, cobertas por uma membrana de polietileno transparente. Cada uma dessas cúpulas receberia oxigénio produzido por uma instalação de eletricidade no gelo subterrâneo.
Nesse sentido, à medida que a população crescesse em Marte, as cúpulas iriam ficar juntas para formar aldeias e até cidades, em forma de anéis. As cidades poderiam ser alimentadas e aquecidas usando energia solar e a atmosfera fina poderia ajudar as cúpulas a manter a temperatura. "Como há muito pouca atmosfera em Marte, a transferência de calor será muito baixa, pelo que o ar dentro das cúpulas não arrefece tão depressa como na Terra", argumentou Lange.
Os edifícios teriam uma sala debaixo do solo marciano, a uma profundidade até seis metros para que as pessoas se pudessem proteger da radiação ou de meteoros perigosos. Nessas salas poder-se-iam, de acordo com este projeto, construir "claraboias que poderiam ter aquários", referiu Lange, lembrando que as janelas de água protegeriam os habitantes da radiação e permitiriam a entrada de luz nessas salas subterrâneas.
"Existe aproximadamente um terço da gravidade, em comparação com a Terra, o que significa em Marte há um conjunto de regras completamente novas que é necessário cumprir ao projetar a arquitetura no espaço", reforçou Lange.
Jonathan Eastwood admite que o design defendido pelos arquitetos contratados pelos Emirados "são parte essencial das infraestruturas essenciais para uma presença a longo prazo de humanos em Marte". "A ideia de proteger gradualmente da radiação é sensata e a ideia das janelas de água é bastante elegante", sublinhou.
https://www.youtube.com/watch?v=cuaQ4UttYY0
https://www.dn.pt/vida-e-futuro/dubai-v ... Kn_HL1uGIg